Dr. Louise Wilkins-Haug

Hosted By:
U.S. Department of Health and Human Services
National Institutes of Health

Confined Placental Mosaicism In Infants with Fetal Growth Restriction

Louise Wilkins-Haug, MD, PhD

Confined Placental Mosaicism - Historical Perspective

- occurs in 1-2 % of first trimester CVS samples
- all chromosomal mosaicism in placental samples is not confined
- 1/3 represents true mosaicism

Etiologies

- Post fertilization event confined to one cell line
- "Rescue" to diploidy of an originally trisomic conception

Approaches to the study of CPM and fetal growth restriction

- Cohorts with CPM identified first trimester (CVS)
- Cohorts of newborns
- Case control studies of newborns

Approach: follow-up of cohorts with CPM diagnosed first trimester

• Adverse outcomes suggested over 10 years ago – pregnancy loss, stillbirth, growth restriction

CPM

Chromosome involved

2,3,7,8 normal outcomes

9, 16, 22 of meiotic origin associated with IUGR

(Robinson, 1997)

Persistence through pregnancy

-variable 50-80%

-35% rate of IUGR (Kalousek, 1991)

Approach: CPM among a cohort of newborns (Artan, 1995)

- Karyotypes from 125 term placentas of pregnancies delivered following prenatal determination of normal fetal karyotype (AMA indication)
 - Higher risk population for nondisjunction
 - -6/125 (4.8%) CPM

• All 6 cases of CPM ended in IUGR infants

-46,XX/47,XX,+14(125/25)	2414	39 wks
- 46,XX/92,XXXX (74/76)	1647	34 wks
- 46,XY/47,XY, +21 (124/26)	2100	36 wks
-46,XX/47,XX,+21(73/87)	2400	40 wk
- 46,XX/45,X (61/79)	1760	38 wk
-46, XY/47, XY, +18(61/79)	2200	39 wks

- Birthweights CPM=2086+/-131.5;
 - normal placental biopsies 3305.2+/- 28.8

Approach: analysis of growth restricted newborns - Unanswered Questions

- How large of a contributor is CPM to the population of infants with growth restriction?
- Are there characteristic clinical findings?

Study Proposal for Case/control analysis—Primary Aim

• Determine the frequency of CPM by karyotype analysis of placental biopsies from infants with growth restriction compared to biopsies from placentas of maternal age matched, appropriately grown infants

Study Proposal – Secondary Aims

- Utilize molecular, chromosome specific polymorphisms to identify uniparental disomy or low level mosaicism in a subset of patients if CPM not identified cytogenetically
- Explore clinical variables for identifying characteristics

Background

- Which IUGR populations have been studied?
- Which chromosomes? Tetraploidy?
- Alternative ways to search
 - Traditional cytogenetics
 - Molecular cytogenetics (FISH)
 - Molecular genetics (dinucleotide repeats)

Studies of infants with unexplained IUGR

•	Kalousek, 1983	2/9
•	Verp, 1990	0/11
•	Krishnamoorthy,1995	4/26
•	Wilkins-Haug, 1995	3/12
•	Cowles, 1996	1/20
•	Stipolijev, 2001	3/20
		13 / 98 (13.2 %)

CPM among different populations of IUGR infants

Kennerknect, 1993

•	Newborns presenting with SGA	0/71
•	Newborns having normal CVS	
	who developed SGA (24/1300)	5/24
•	Controls	0/20

What do these studies suggest?

- CPM may play a role in the significantly IUGR population those characterized by antepartum diagnoses, nonreassuring fetal well-being
- Sample sizes of both case and controls need to be adequate
- Role of tetraploidy?

Aneuploidy versus tetraploidy – Is there any evidence to support tetraploidy as a pathologic factor?

• Considered artifact - time in culture Tegenkamp, 1976; Kaji. 1979, 1981)

Does tetraploidy occur "in vivo"?

- preimplantation embryos
- uncultured amnion by sex chromatin and cellular DNA determinations (Klinger, 1960)
- Tetraploidy by flow cytometry in placenta
 - 2.2% tetraploid

Background rate of tetraploidy

(Noomen, 2001)

- 100 women AMA
- Semi direct and long term culture of chorionic villi
- Up to three tetraploids in 27% of STC
- In all long term cultures

Any association of tetraploidy with abnormal placentation?

- Miscarriages assessed by long term culture (Hunt, 1985)
 - 10-30% in spontaneous miscarriages
 - − 10% tetraploidy in first trimester tabs
- Miscarriages assessed by direct preparation (Eiben, 1990)
 - -9.2% tetraploidy

Tetraploidy among CPM

• 5% of CPM is tetraploid mosaic (Ledbetter, 1992)

- ACC UK collaborative data (1994)
 - Tetraploidy noted as well

Materials and Methods

- Antepartum identification of IUGR by ultrasound as <10% for gestational age
- Singleton pregnancies with EDC confirmed by US < 16 weeks gestation
- Excluded maternal conditions of HTN, IDDM, SLE, fetal malformations

Sample Sizes

- 75 IUGR cases without recognized risk factors
- 75 AGA controls matched by maternal age to within 5 years
- 95% confidence with 80% power to detect ≥ 15% CPM among IUGR population
- Assumes 0.5 % CPM among AGA controls

Study samples

- placental biopsies
- cord blood for karyotype or ability to recontact
- parental buccal samples or peripheral blood sample for DNA extraction

Placental Samples

- paired chorionic plate samples removed from a mapped 4 locations
- one for culture
- one for disaggregated nuclei (FISH or DNA extaction)

Karyotype analysis

- Cultures established according to routine long term protocols
- 25 cells scored from each site (excludes > 15% mosaicism with 95% confidence)

Molecular analysis

- Fluorescent panel of dinucleotide markers with heterozygosity scores of > 0.75
- Automated genotyping on ABI377
- Minimum of 1 and maximum of three markers per each autosome

Birth Weight Distribution - Males

Birth Weight Distribution - Females

Results

	<u>Aneuploid</u>	Tetraploid	Total
Cases	1	5	6/75
 Controls 	1	0	1/75

Aneuploidy Mosaicism

$$-46,XX/48,XX,+17,+21$$

diploid/aneuploid

14 / 12

Control

$$-46,XY/47,XY,+10$$

7 / 13

Tetraploid Mosaicism

•	Cases	diploid/polyploid	days in culture
	-46,XX/92,XXXX	25 / 30	10
	-46, XY/92, XXYY	25 / 13	13
	-46,XX/92,XXXX	25 / 23	10
	-46,XX/92,XXXX	25 / 10	8
	-46.XX/92.XXXX	25 / 19	12

Controls

none

Hybridization Sites in IUGR Placentas Probe:D17Z1

Hybridization Sites in AGA Placentas

Birth Weight Distribution - Males

Birth weight Distribution - Females

Placental Histology

Placental Histology

Results by molecular testing – UPD among placentas with normal karyotype

- 16 sets of mother / father/ newborn DNA extracted
- All autosomes examined with 1 to 3 dinucleotide repeats
- End point of confirming biparental

Confirming biparental

- I infant's polymorphisms only consistent with biparental
- II consistent with both biparental and uniparental
- III only consistent with uniparental

Analyses Performed

• Type I

352 markers

• Type II

704 markers

- Resolved as biparental on subsequent analyses (additional 1 or 2 markers per chromosome)
- Type III

5 markers

UPD Results

- Maternal heterodisomy chromosome 14
- Paternal isodisomy chromosome 9
- Nonpaternity

Case # 235

• Chromosome 14S617

•	M	163.1	167.3
•	F	163.1	167.1

• B 163.1 167.3 biparental or maternal heterodisomy

• Chromosome 14S587

•	M	250.5	261.9		
•	F	262.1	265.8		
•	В	250.7	261.9	M	M
		maternal heterodisomy			

M or F

M

• Chromosome 14S308

•	M	201.0	205.1		
•	F	204.8	204.8		
•	В	201.0	205.0	M	M
		maternal heterodisomy			

Case # 236

Chromosome 9S930				
- M	289.9	289.9		
– F	290.5	298.4		
– B	290.7	290.7	F	F
 paternal isodisomy 				
Chromosome 9S921				
- M	174.6	174.6		
– F	196.5	200.60		
– B	200.6	200.6		
	 paternal isodise 	omy	F	F
Chromsome 9S921				
- M	175.0	175.0		
– F	197.0	201.1		
– B	201.1	201.1	F	F
 paternal isodisomy 				
	 M F B Chromoso M F B Chromson M F 	 M 289.9 F 290.5 B 290.7 paternal isodisc Chromosome 9S921 M 174.6 F 196.5 B 200.6 paternal isodisc Chromsome 9S921 M 175.0 F 197.0 B 201.1 	 M 289.9 289.9 F 290.5 298.4 B 290.7 290.7 paternal isodisomy Chromosome 9S921 M 174.6 174.6 F 196.5 200.60 B 200.6 200.6 paternal isodisomy Chromsome 9S921 M 175.0 175.0 F 197.0 201.1 B 201.1 201.1 	 M 289.9 289.9 F 290.5 298.4 B 290.7 290.7 F paternal isodisomy Chromosome 9S921 M 174.6 174.6 F 196.5 200.60 B 200.6 200.6 − paternal isodisomy F Chromsome 9S921 M 175.0 175.0 F 197.0 201.1 B 201.1 201.1 F

Clinical Outcomes with UPD

- Maternal chromosome 14
 - 38 week infant at 2200 grams
 - Placenta notable for infarcts, villitis
- Paternal chromosome 9
 - 29 week infant at 660 grams
 - Placenta notable for infarcts

Conclusions

- CPM in 6/75 (8.0 %) well defined IUGR infants versus 1/75 (1.3 %) controls
- No consistent clinical characterization of antepartum complications or placental pathology
- UPD either itself or as a reflection of hidden CPM may play a minor role among infants with IUGR